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How Much Information is 
in a Jet / event?
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Appetizer
Autoencoder introduction



The Plain Autoencoder

Loss = |Output – Input| (what is this for jets?)



The Plain Autoencoder

Latent space =?= Learnt representation



Fish Course
The Metric Space of Collider Events



Some of the next few slides are taken directly from a talk by Jesse Thaler at SLAC in 2019,
http://www.jthaler.net/talks/jthaler_2019_04_SLAC_EMD.pdf



Earth Movers Distance
Cost to transform one jet into another = Energy * distance

Defines a metric space in which 
jets or collider events form a 
geometric manifold.

Taken from https://energyflow.network/docs/emd/, Eric Metediov, Patrick Komiske III, Jesse Thaler

https://energyflow.network/docs/emd/










Main Course
The Variational Autoencoder



The Plain Autoencoder
Garbage

AE
(1D latent space)

Rec. Loss = |𝒙𝑜𝑢𝑡 − 𝒙𝑖𝑛|
2



The Plain Autoencoder
Garbage

Latent Space



The Plain Autoencoder
Garbage

1.The AE learns some dense packing of the 
data space

2.The latent representation is highly 
coupled with the expressiveness of the 
network architecture of the encoder and 
decoder



The Variational Autoencoder

Loss  =  Τ𝒙𝑜𝑢𝑡 − 𝒙𝑖𝑛
2 𝛽2 − σ𝑖

1

2
1 + log 𝜎𝑖

2 − 𝜇𝑖
2 − 𝜎𝑖

2

Reconstruction error KL(q(z|x)||p(z)) ~ “Information cost”



The Variational Autoencoder
Information and the loss function
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1) 𝜷 is dimensionful!
The same dimension as the distance metric,

e.g. GeV.

The Variational Autoencoder
Information and the loss function



The Variational Autoencoder
Information and the loss function

Loss  =  𝒙𝑜𝑢𝑡 − 𝒙𝑖𝑛
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𝜷 → ∞
No info encoded in latent space

𝜷 ≪ Lengthscale
Info encoded in latent space



The Variational Autoencoder
Information and the loss function

Loss  =  𝒙𝑜𝑢𝑡 − 𝒙𝑖𝑛
2 − 𝛽2σ𝑖

1

2
1 + log 𝜎𝑖

2 − 𝜇𝑖
2 − 𝜎𝑖

2

𝜷 → ∞
No info encoded in latent space

𝜷 ≪ Lengthscale
Info encoded in latent space

2) 𝜷 is the cost for encoding information
The encoder will only encode information about the input to the extent that its usefulness 

for reconstruction is sufficient to justify the cost.



The Variational Autoencoder
Information and the loss function

Loss  =  Τ𝒙𝑜𝑢𝑡 − 𝒙𝑖𝑛
2 𝛽2 − σ𝑖

1

2
1 + log 𝜎𝑖

2 − 𝜇𝑖
2 − 𝜎𝑖

2

3) 𝜷 is the distance resolution in 
reconstruction space

The stochasticity of the latent sampling will smear the 
reconstruction at scale ~ 𝛽



The Variational Autoencoder
Bananas

Dense
10-dim
Latent
Space

Dense



The Variational Autoencoder
Bananas

Latent Space Reconstruction Space

𝜷 < 𝟎. 𝟏



The Variational Autoencoder
Bananas

Latent Space Reconstruction Space

𝜷 < 𝟎. 𝟏

(𝜎−1)



The Variational Autoencoder
Bananas

Latent Space Reconstruction Space

𝜷 < 𝟎. 𝟏

Size = Τ𝛽 𝜎The VAE is doing non-linear PCA
(𝜎−1)



The Variational Autoencoder
Bananas

Latent Space Reconstruction Space

𝟎. 𝟏 < 𝜷 < 𝟏. 𝟎

(𝜎−1)



The Variational Autoencoder
Bananas

Latent Space Reconstruction Space

𝜷 ≫ 𝟏
(𝜎−1)



The Variational Autoencoder
Dimensionality

𝐷1 ≡ 2
𝑑 ∆𝒙 2

𝑑 𝛽2

𝐷2 ≡
𝑑 𝐾𝐿

𝑑 log 𝛽

Variation of resolution with 

scale (think 𝑟2 = 𝐷 𝜎2 for 
D-dimensional Gaussian).

Variation of information 
with scale.

I am still trying to work out formally the meaning of these expressions, but they  
have an air of truthiness about them and empirically give sensible results.



The Variational Autoencoder
What is new?

Are these new?

I have never seen 
them before.

Spectral AnalysisDimensionality Analysis

𝐷1 ≡ 2
𝑑 ∆𝒙 2

𝑑 𝛽2

𝐷2 ≡
𝑑 𝐾𝐿

𝑑 log 𝛽 (𝜎−1)



The Variational Autoencoder
Orthogonalization and Organization is Information-Efficient

vsOrthogonalization:

vsOrganization:



Cheese Course
Application to Top Jets



Jet VAE

{𝑝𝑇 𝑖 , 𝑦𝑖 , 𝜑𝑖} PFN
Large
Latent 
space

Dense {𝑝𝑇 𝑖 , 𝑦𝑖 , 𝜑𝑖}

Sinkhorn distance ≈ EMD 

50 particles1-100 particles



Exploring the Learnt Representation
Top Jets

𝜷 = 𝟒𝟎 𝑮𝒆𝑽



Exploring the Learnt Representation
Top Jets

𝜷 = 𝟒𝟎 𝑮𝒆𝑽

Latent Dimension 3
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Exploring the Learnt Representation
Top Jets

𝜷 = 𝟒𝟎 𝑮𝒆𝑽



Exploring the Learnt Representation
Top Jets

𝜷 = 𝟒𝟎𝟎 𝑮𝒆𝑽



Exploring the Learnt Representation
Dimensionality

?



What is the point?
“Can we learn something new from dimensionality and 
geometry? Maybe something in the nonperturbative regime?” 

Anonymous Professor A
“Once you have understood the geometry of the data 
manifold you have understood everything about the 
problem”

Anonymous Professor B
“Ehhhh, I don’t know, probably not.”These are not exact quotes, just 

based on recollection, please 
don’t take them too seriously!



Dessert
Unsupervised Classification



A Mixed Sample



A Mixed Sample
VAE structure

𝑥, 𝑦 Dense
Continuous

{𝑧𝑖}
Dense 𝑥, 𝑦

Categorical
𝑐1, 𝑐2

Dense

𝑃(𝑐|𝑥)

𝑃(𝑧|𝑥, 𝑐)
𝑃(𝑥|𝑐, 𝑧)



A Mixed Sample
VAE structure

Learnt Classifier

C
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A Note on Topology
The regular Gaussian VAE is trying to learn a mapping from the real data manifold 𝑀 to the latent space 𝑅𝑁, 
because that is the structure imposed on the latent space.

The real data manifold might not be topologically equivalent to 𝑅𝑁. E.g. the 𝜑 coordinate of the jet is on 𝑆1. 
In this case the plain VAE learns to cut the circle at an arbitrary position, which is not ideal. If I give it a latent 
space in 𝑅𝑁 × 𝑆1 𝑀, it should optimally learn to put periodic coordinates on 𝑆1’s… What about 𝑆𝑘?

A mixed sample is a superposition of manifolds 𝑀1 ×𝑀2 ×…. This can be modelled using a categorical 
variable before the continuous ones.

My philosophy: give the VAE as many options for latent category and topology as I can 
think of and practically implement, and then attempt to learn the structure of the 
dataset by studying how it chooses to use them.

Is this new?



Digestif
Conclusions

The VAE is trying to learn a simple representation of the 
geometry of the data manifold on which it is trained.

The latent space statistics can be studied to learn about the 
learnt geometry.

If the geometry of the data manifold reflects the underlying 
physics responsible for generating it, then maybe the geometry 
can teach us about the physics.



Special thanks to



Reconstruction Error
Sinkhorn Distance ≈ EMD

arXiv:1902.02346

Sinkhorn’s algorithm; start with ∆𝑅𝑖𝑗 , 𝑝𝑇𝑖 , 𝑝𝑇𝑗 then:

𝐾𝑖𝑗 = exp( Τ∆𝑅𝑖𝑗 𝜏)

𝑢𝑖 = 𝟏𝑖
𝑣𝑖 = 𝟏𝑗

Repeat N times:
𝑢𝑖 = Τ𝑝𝑇𝑖 𝐾. 𝑣 𝑖

𝑣𝑖 = Τ𝑝𝑇𝑗 𝐾𝑇 . 𝑢
𝑗

Return 𝑇𝑖𝑗 = 𝑢𝑖𝐾𝑖𝑗𝑣𝑗



The Variational Autoencoder
Doesn’t suffer from curse of dimensionality

Toy data generated from:

𝑃 Ԧ𝑥 = [ς𝑖=1
10 𝑁𝑖 𝜇 = 0, 𝜎 = 1 ] 𝑁11 𝜇 = 0, 𝜎 = 0.1

With 𝑁𝑡𝑜𝑡 = 5 ∗ 105 points

Typical distance to neighbour ~ 𝑁𝑡𝑜𝑡
−1/10

~ 0.3

Correlation dimension runs into sparsity limit before the 
small dimension is even discovered!

The VAE finds the small dimension.



Future Directions

1. What is the point?

2. Alternative latent priors?

3. Alternative metrics?



The Variational Autoencoder
ML Engineer:

“A VAE is a fancy AE with regulated stochastic latent space 
sampling”

Bayesian statistician:

“A VAE is a probability model trained to extremize the 
Evidence Lower BOund on the posterior distribution p(x)”



The Variational Autoencoder:
Dimensionality

∆𝒙 2 = σ ∆𝑥𝑖
2 = 𝐷𝜌2 + σ𝑖>𝐷 𝑆𝑖

2

𝐷 =
𝑑 ∆𝒙 2

𝑑𝜌2

Setting 
𝑑𝐿

𝑑𝜎
= 0 implies:

1. 𝜌 = 𝛽

2. 𝐷 =
𝑑 𝐾𝐿

𝑑 log 𝛽


