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Conclusions

I have been training Variational Autoencoders to reconstruct 
jets or collider events using Earth Movers Distance as the 
reconstruction metric.

The learnt representation:
• Is scale dependent
• Is orthogonalized
• Is hierarchically organized by scale
• Has fractal dimension which relates to that of the data 

manifold

This is because:
• The VAE is trained to be parsimonious with information
• The metric space is physically meaningful and structured



The Plain Autoencoder

Loss = |Output – Input| (what is this for jets?)



The Plain Autoencoder

Latent space =?= Learnt representation



The Plain Autoencoder: a toy example

AE
(1D latent space)

Rec. Loss = |𝒙𝑜𝑢𝑡 − 𝒙𝑖𝑛|
(2)



The Plain Autoencoder: a toy example

Latent Space



The Plain Autoencoder: a toy example

1.The AE learns some dense packing of the 
data space

2.The latent representation is highly 
coupled with the expressiveness of the 
network architecture of the encoder and 
decoder



The Variational Autoencoder
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Reconstruction error KL(q(z|x)||p(z)) ~ “Information cost”



The Variational Autoencoder:
Information and the loss function
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1) 𝜷 is dimensionful!
The same dimension as the distance metric,

e.g. GeV.

The Variational Autoencoder:
Information and the loss function
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𝜷 → ∞
No info encoded in latent space

𝜷 ≪ Lengthscale
Info encoded in latent space



The Variational Autoencoder:
Information and the loss function
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𝜷 → ∞
No info encoded in latent space

𝜷 ≪ Lengthscale
Info encoded in latent space

2) 𝜷 is the cost for encoding information
The encoder will only encode information about the input to the extent that its usefulness 

for reconstruction is sufficient to justify the cost.



The Variational Autoencoder:
Information and the loss function
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3) 𝜷 is the distance resolution in 
reconstruction space

The stochasticity of the latent sampling will smear the 
reconstruction at scale ~ 𝛽



The Variational Autoencoder:
Bananas

Train VAE with a 10 dim latent space on this 2D 
dataset



The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝜷 < 𝟎. 𝟏

Exp[KL] ~ 1/σ



The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝜷 < 𝟎. 𝟏

Size = Τ𝛽 𝜎The VAE is doing non-linear PCA

Exp[KL] ~ 1/σ



The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝜷 < 𝟎. 𝟏

Size = Τ𝛽 𝜎The VAE is doing non-linear PCA

Exp[KL] ~ 1/σ



The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝟎. 𝟏 < 𝜷 < 𝟏. 𝟎

Exp[KL] ~ 1/σ



The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝜷 ≫ 𝟏

Exp[KL] ~ 1/σ



β

The Variational Autoencoder:
Dimensionality

𝐷1 = ෍

𝑖

𝑑 𝐾𝐿𝑖
𝑑 log 𝛽

𝐷2 =
𝑑 ∆𝒙 2

𝑑𝛽2

The scaling of KL with beta suggests a notion of 
dimensionality, that relates to how tightly small 
gaussians are  being packed into the latent space.

A similar notion of dimensionality can be derived from 
the packing of gaussians into the data-space.



Distance between Jets:
EMD: Cost to transform one jet into another = Energy * distance

arXiv:1902.02346

Video taken from https://energyflow.network/docs/emd/, 
Eric Metediov, Patrick Komiske III, Jesse Thaler

Defines a metric space in which 
jets or collider events form a 
geometric manifold.

In practice I use a tractable approximation to EMD 
called Sinkhorn distance

arXiv:1306.0895 [stat.ML]   M. Cuturi

https://energyflow.network/docs/emd/


Jet VAE

{𝑝𝑇 𝑖 , 𝑦𝑖 , 𝜑𝑖} PFN
Large
Latent 
space

Dense {𝑝𝑇 𝑖 , 𝑦𝑖 , 𝜑𝑖}

Sinkhorn distance ≈ EMD 

50 particles1-100 particles



W Jets

𝜷 = 𝟐. 𝟓 𝑮𝒆𝑽



W Jets

Boosted Frame:



W Jets

𝜷 = 𝟐. 𝟓 𝑮𝒆𝑽



Exploring the Learnt Representation:
Top Jets

𝜷 = 𝟒𝟎 𝑮𝒆𝑽



Exploring the Learnt Representation:
Top Jets

𝜷 = 𝟒𝟎 𝑮𝒆𝑽

Latent Dimension 3
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Exploring the Learnt Representation:
Top Jets

𝜷 = 𝟒𝟎 𝑮𝒆𝑽



Exploring the Learnt Representation:
Dimensionality

?



A Mixed Sample



A Mixed Sample
VAE structure

𝑥, 𝑦 Dense
Continuous

{𝑧𝑖}
Dense 𝑥, 𝑦

Categorical
𝑐1, 𝑐2

Dense

𝑃(𝑐|𝑥)

𝑃(𝑧|𝑥, 𝑐)
𝑃(𝑥|𝑐, 𝑧)



A Mixed Sample
VAE structure

Learnt Classifier
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Conclusions
VAE latent spaces learn concrete representations of the manifolds on which they are 
trained.

A meaningful distance metric which encodes interesting physics at different scales 
leads to a meaningful learnt representation which encodes interesting physics at 
different scales.

For a sufficiently simple manifold, the VAE learnt representation is:
• Orthogonalized
• Hierarchically organized
• Has a scale-dependent fractal dimension which directly relates to that of the 

true data manifold

These properties are due to the demand to be parsimonious with information.



The Variational Autoencoder:
Orthogonalization and Organization is Information-Efficient

vsOrthogonalization:

vsOrganization:



Exploring the Learnt Representation:
Top Jets

𝜷 = 𝟒𝟎𝟎 𝑮𝒆𝑽


