Representation Learning of Collider Events

Jack Collins

IAS Program on High Energy Physics 2021

How Much Information is in a Jet?

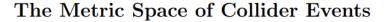
Kaustuv Datta and Andrew Larkoski

Physics Department, Reed College, Portland, OR 97202, USA

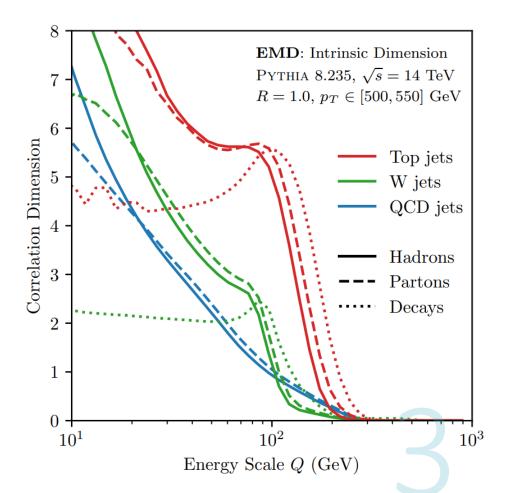
How Much Information is in a Jet?

Kaustuv Datta and Andrew Larkoski

Physics Department, Reed College, Portland, OR 97202, USA



Patrick T. Komiske,^{*} Eric M. Metodiev,[†] and Jesse Thaler[‡] Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Physics, Harvard University, Cambridge, MA 02138, USA



Conclusions

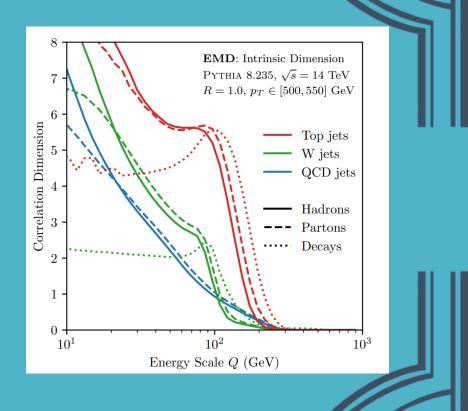
I have been training Variational Autoencoders to reconstruct jets or collider events using Earth Movers Distance as the reconstruction metric.

The learnt representation:

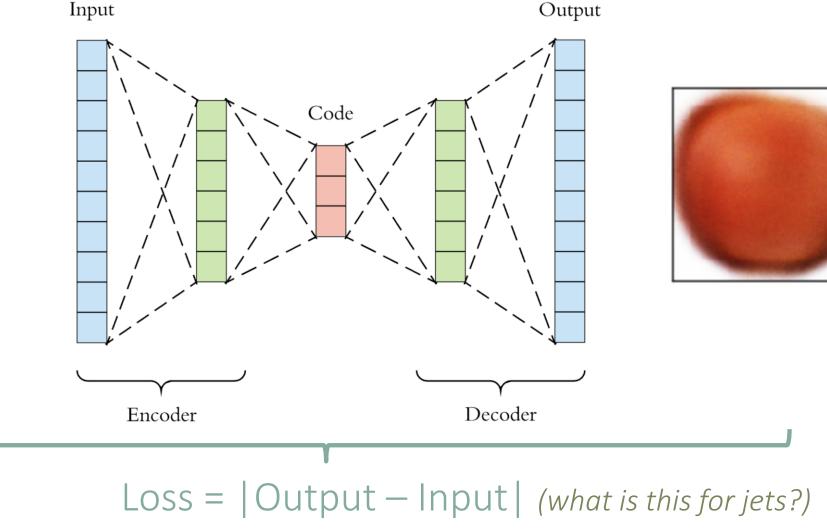
- Is scale dependent
- Is orthogonalized
- Is hierarchically organized by scale
- Has fractal dimension which relates to that of the data manifold

This is because:

- The VAE is trained to be parsimonious with information
- The metric space is physically meaningful and structured

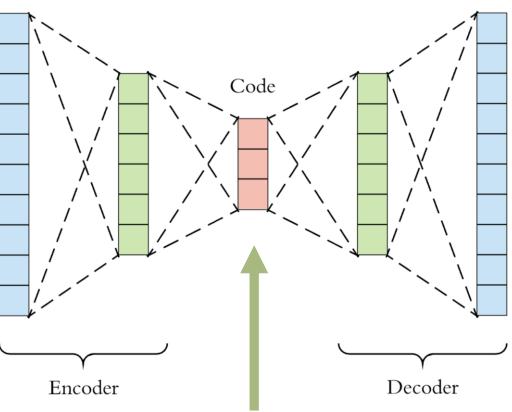


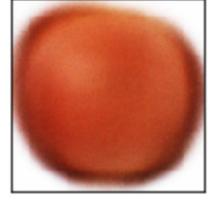
The Plain Autoencoder



The Plain Autoencoder

Input

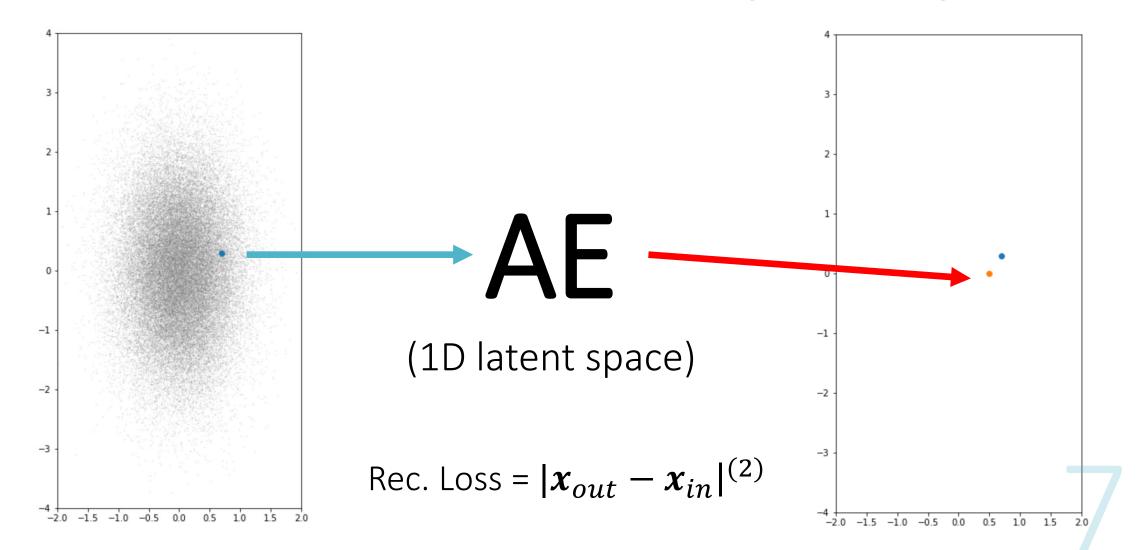




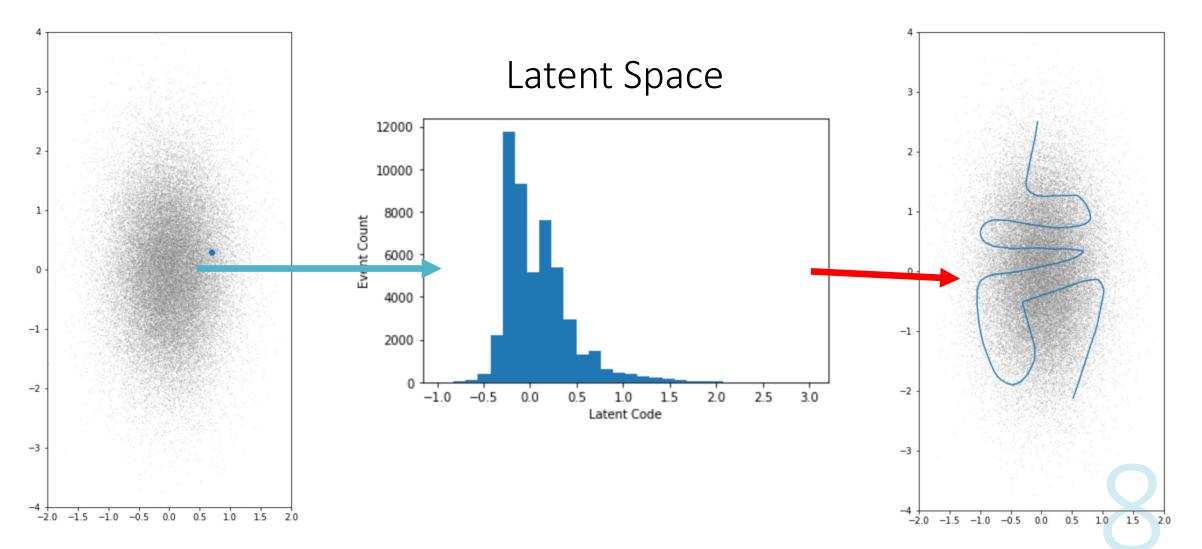
Output

Latent space =?= Learnt representation

The Plain Autoencoder: a toy example

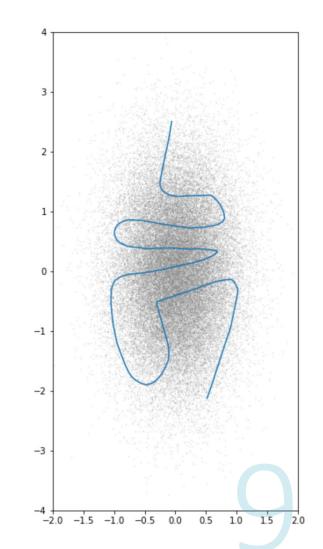


The Plain Autoencoder: a toy example

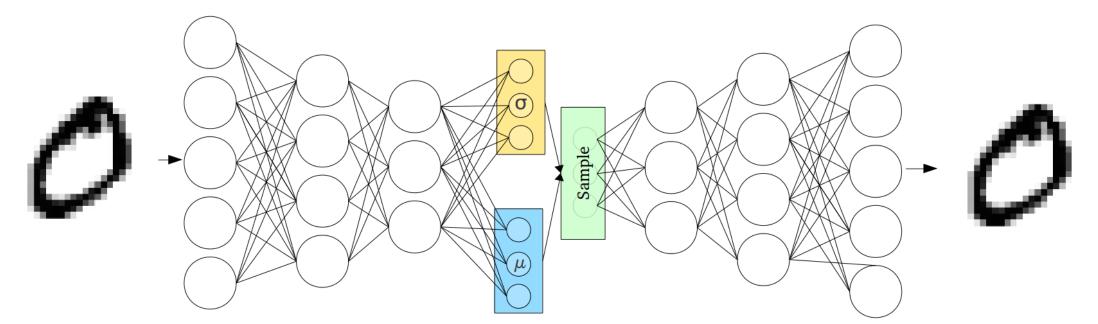


The Plain Autoencoder: a toy example

- 1. The AE learns some **dense packing** of the data space
- 2. The latent representation is **highly coupled with** the expressiveness of the **network architecture** of the encoder and decoder



The Variational Autoencoder



$$Loss = |\mathbf{x}_{out} - \mathbf{x}_{in}|^2 / 2\beta^2 - \sum_i \frac{1}{2} \left(1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2\right)$$

Reconstruction error $KL(q(z|x)|/p(z)) \sim \text{"Information cost"}$

The Variational Autoencoder: Information and the loss function

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 / 2\beta^2 - \sum_i \frac{1}{2} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 - 2\beta^2 \sum_i \frac{1}{2} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

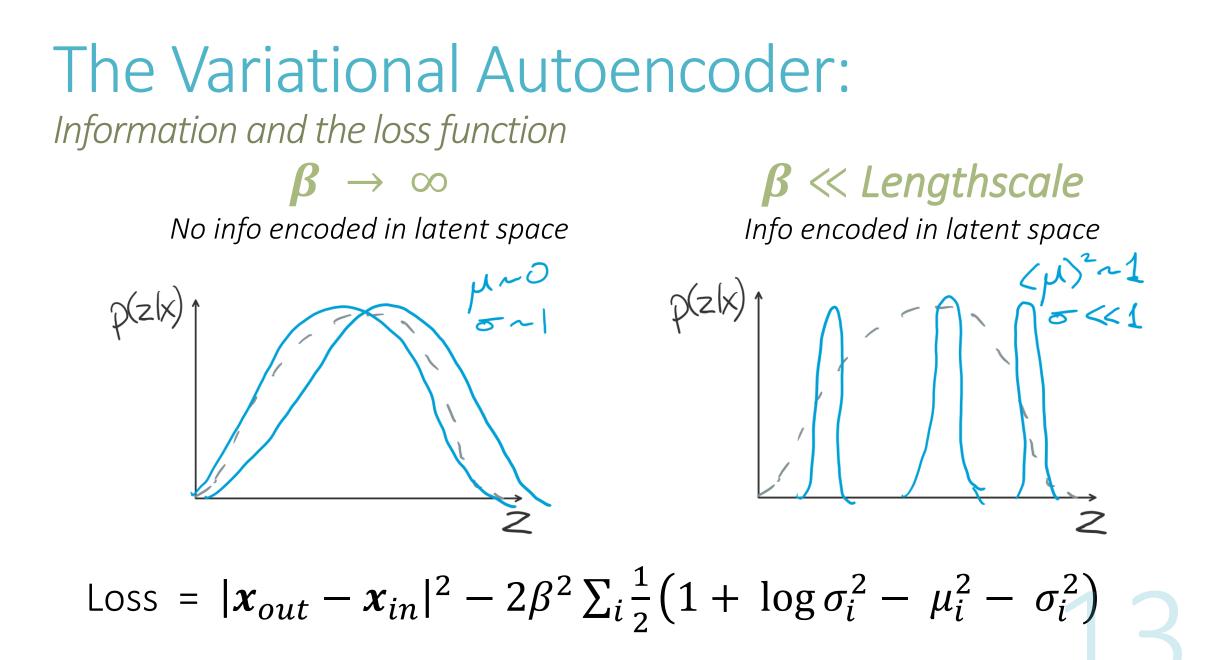
The Variational Autoencoder: Information and the loss function

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 / 2\beta^2 - \sum_i \frac{1}{2} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

1) β is dimensionful!

The same dimension as the distance metric, e.g. GeV.

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 - 2\beta^2 \sum_i \frac{1}{2} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$



The Variational Autoencoder:

Information and the loss function

 $\beta \rightarrow \infty$ No info encoded in latent space $\beta \ll$ Lengthscale

Info encoded in latent space

2) β is the cost for encoding information

The encoder will only encode information about the input to the extent that its usefulness for reconstruction is sufficient to justify the cost.

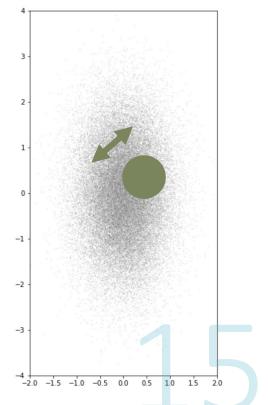
Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 - 2\beta^2 \sum_i \frac{1}{2} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

The Variational Autoencoder: Information and the loss function

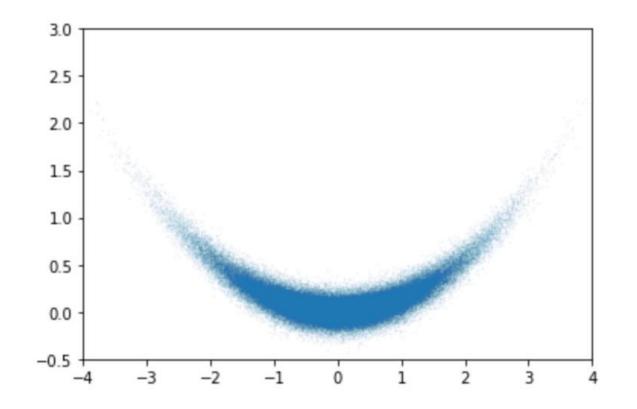
Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 / 2\beta^2 - \sum_i \frac{1}{2} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

3) β is the distance resolution in reconstruction space

The stochasticity of the latent sampling will smear the reconstruction at scale $\sim \beta$

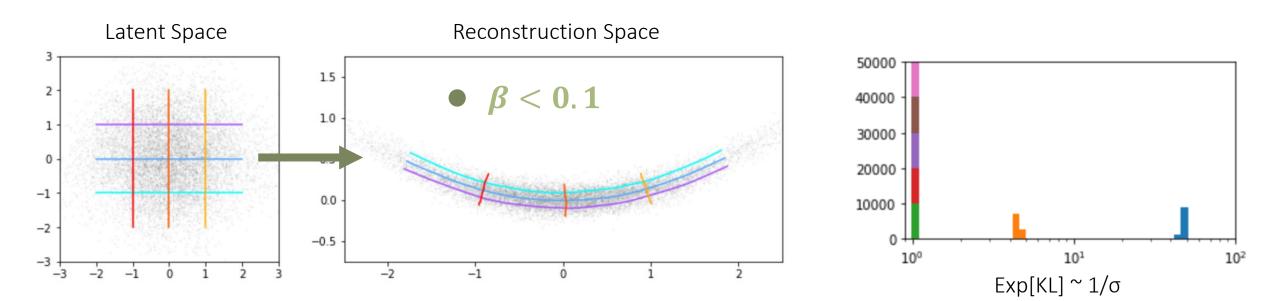


The Variational Autoencoder: Bananas

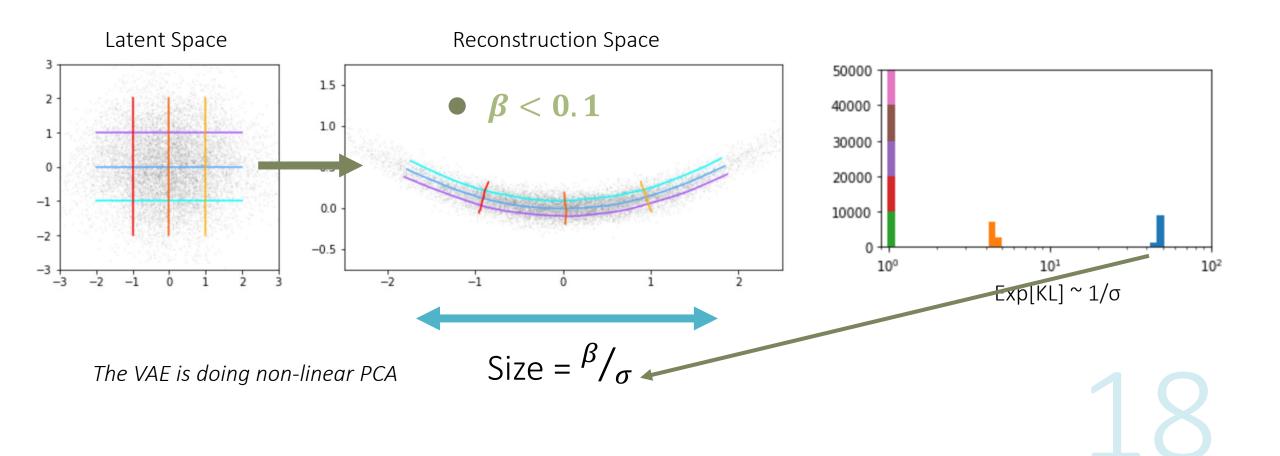


Train VAE with a 10 dim latent space on this 2D dataset

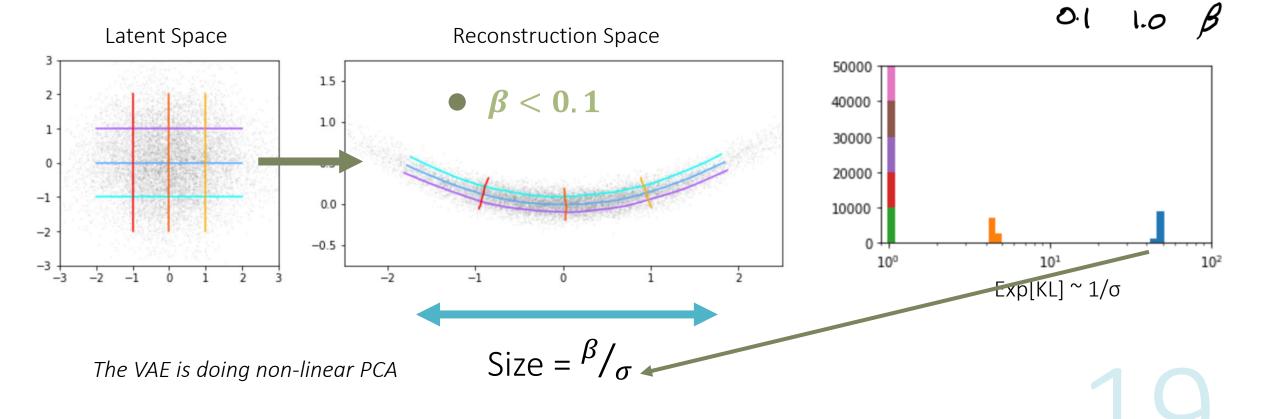
The Variational Autoencoder: Bananas



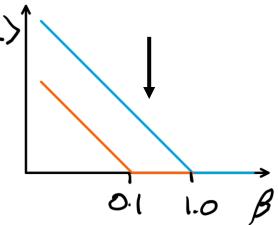
The Variational Autoencoder: Bananas

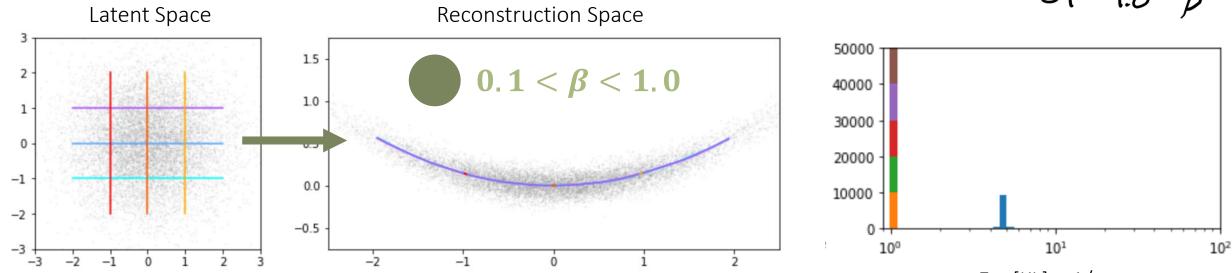


The Variational Autoencoder: KLS Bananas

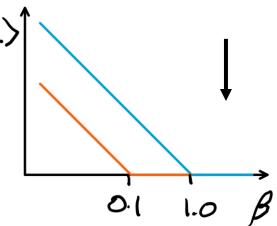


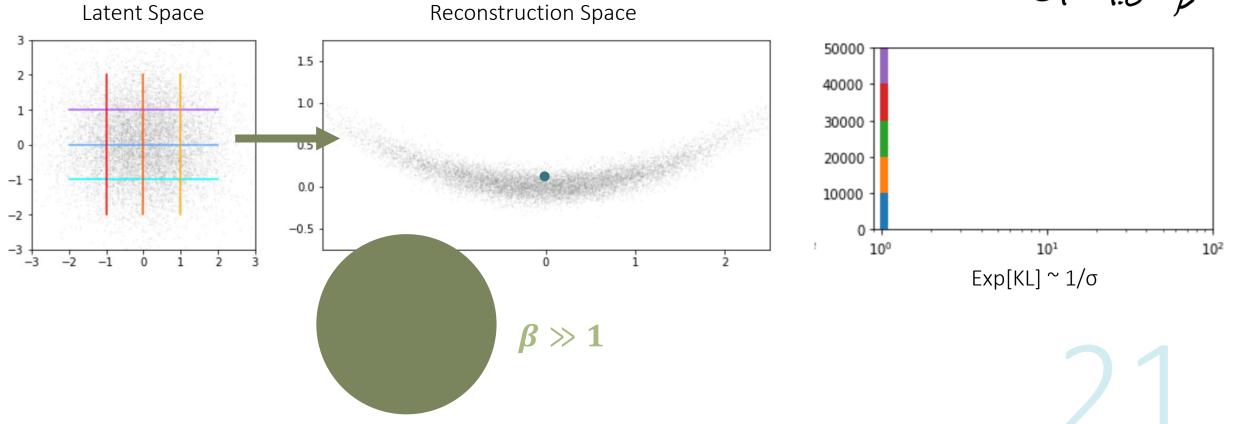
The Variational Autoencoder: Sananas





 $Exp[KL] \simeq 1/\sigma$





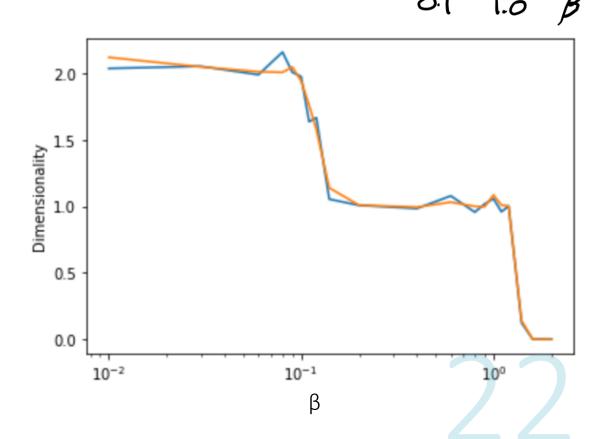
The Variational Autoencoder: < Dimensionality

The scaling of KL with beta suggests a notion of dimensionality, that relates to how tightly small gaussians are being packed into the latent space.

$$D_1 = \sum_i \frac{d\langle KL_i \rangle}{d\log\beta}$$

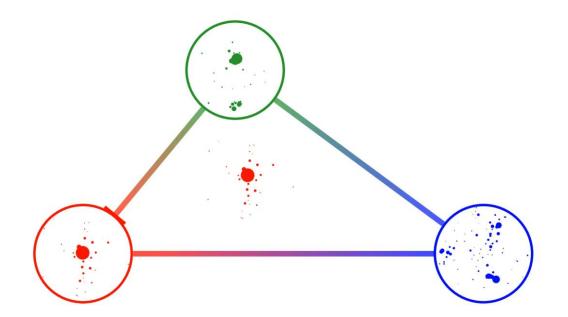
A similar notion of dimensionality can be derived from the packing of gaussians into the data-space.

$$D_2 = \frac{d\langle |\Delta \boldsymbol{x}|^2 \rangle}{d\beta^2}$$



Distance between Jets:

EMD: Cost to transform one jet into another = Energy * distance



arXiv:1902.02346

Video taken from <u>https://energyflow.network/docs/emd/</u>, Eric Metediov, Patrick Komiske III, Jesse Thaler

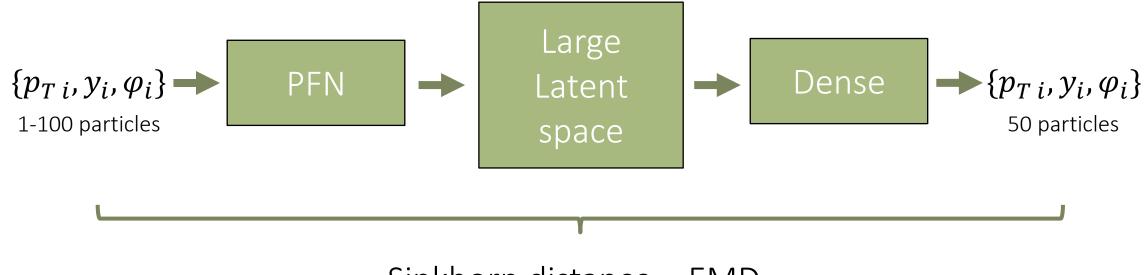
$$ext{EMD}(\mathcal{E},\mathcal{E}') = \min_{\{f_{ij}\}} \sum_{ij} f_{ij} rac{ heta_{ij}}{R} + \left|\sum_i E_i - \sum_j E_j'
ight|,
onumber \ f_{ij} \geq 0, \quad \sum_j f_{ij} \leq E_i, \quad \sum_i f_{ij} \leq E_j', \quad \sum_{ij} f_{ij} = E_{\min},$$

Defines a metric space in which jets or collider events form a geometric manifold.

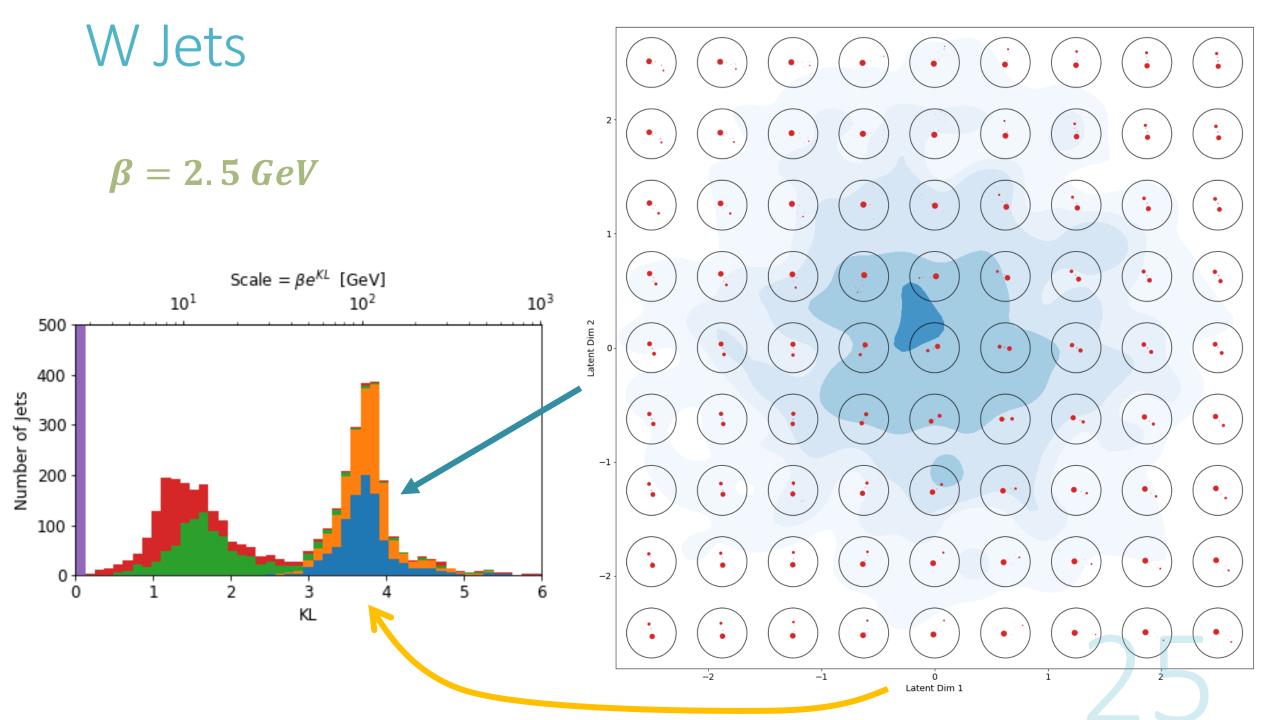
In practice I use a tractable approximation to EMD called Sinkhorn distance

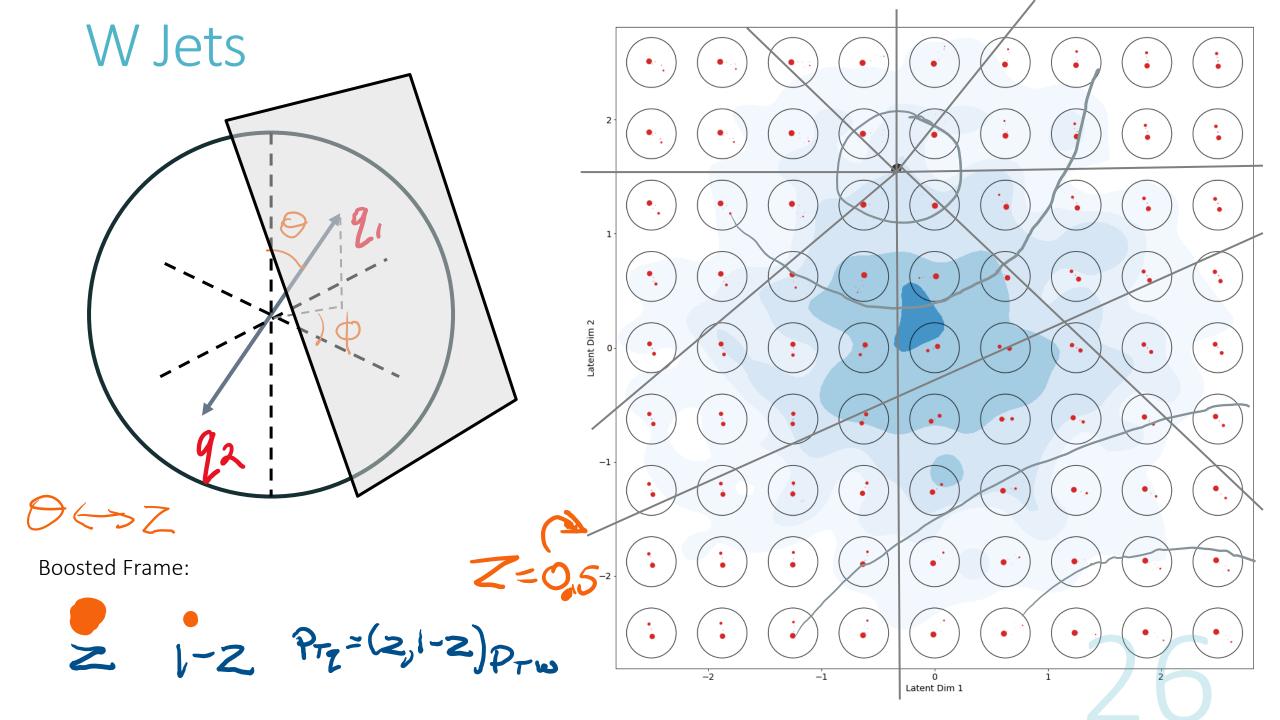
arXiv:1306.0895 [stat.ML] M. Cuturi

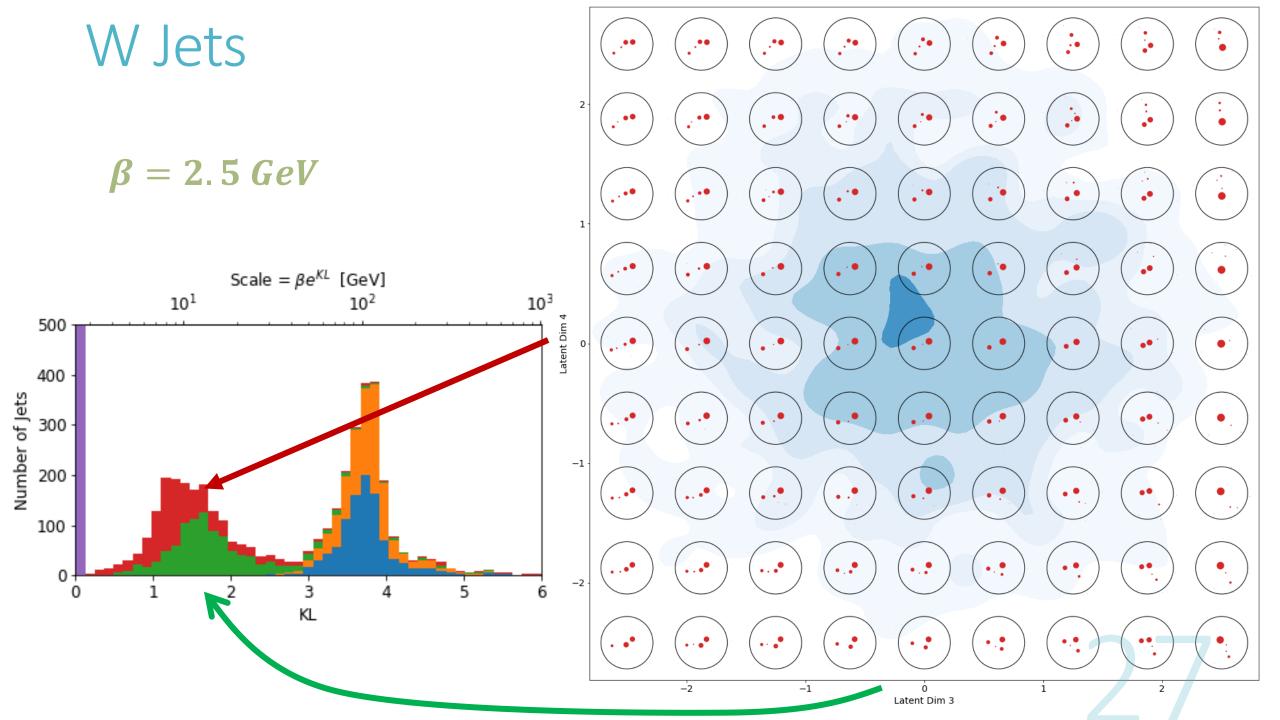
Jet VAE



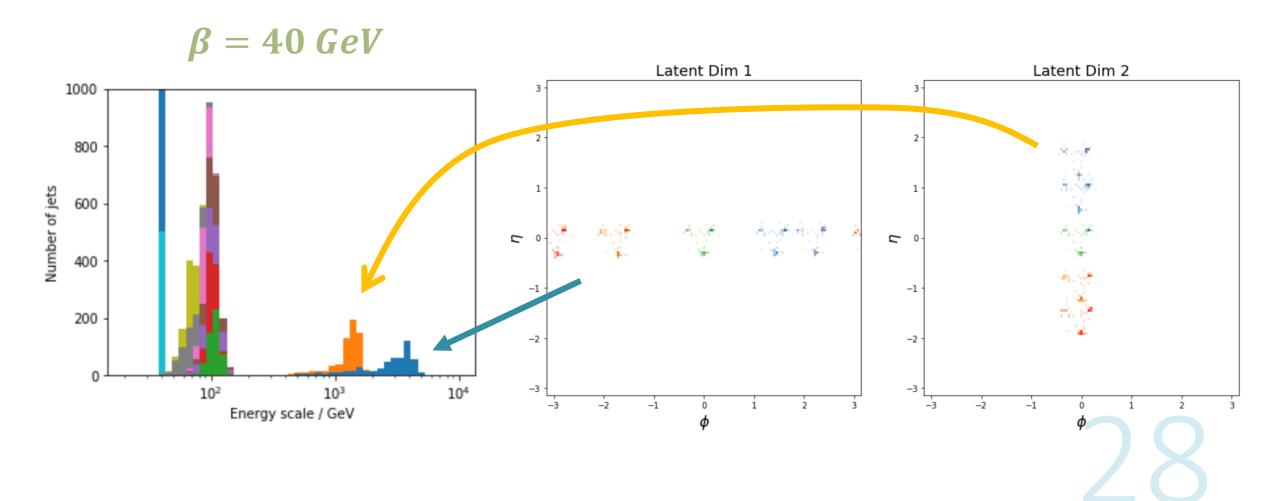
Sinkhorn distance ≈ EMD

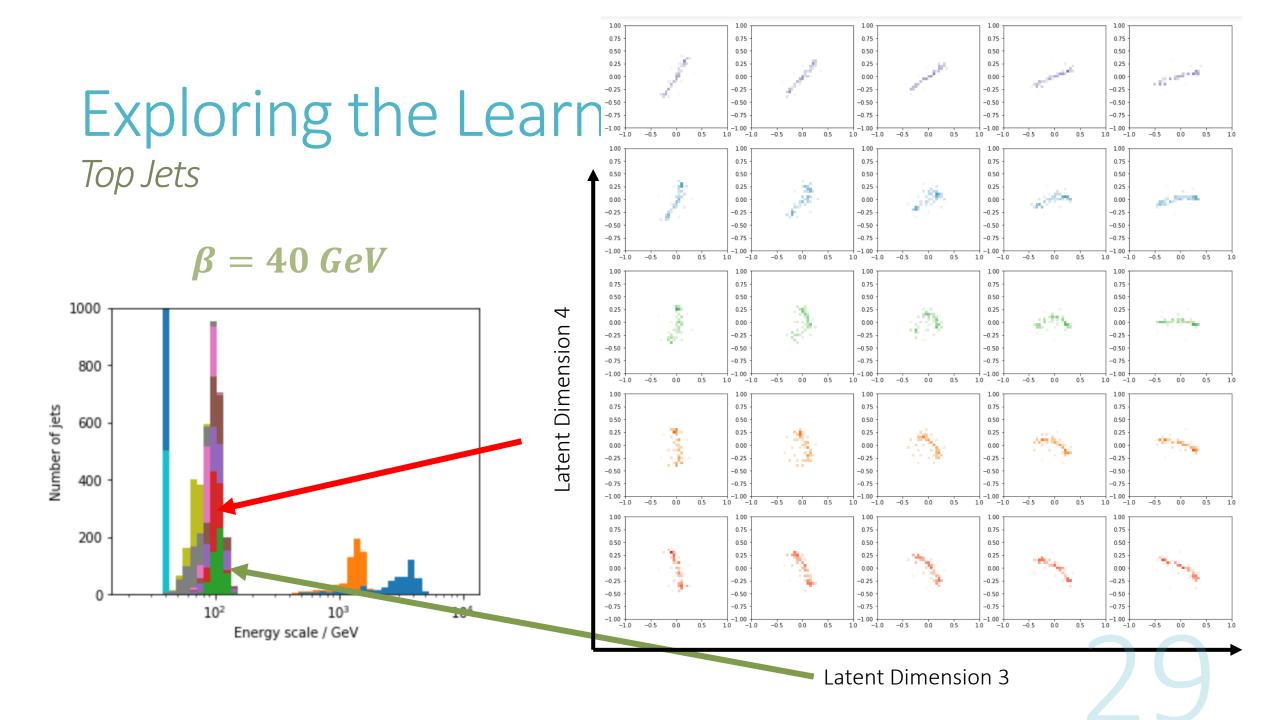




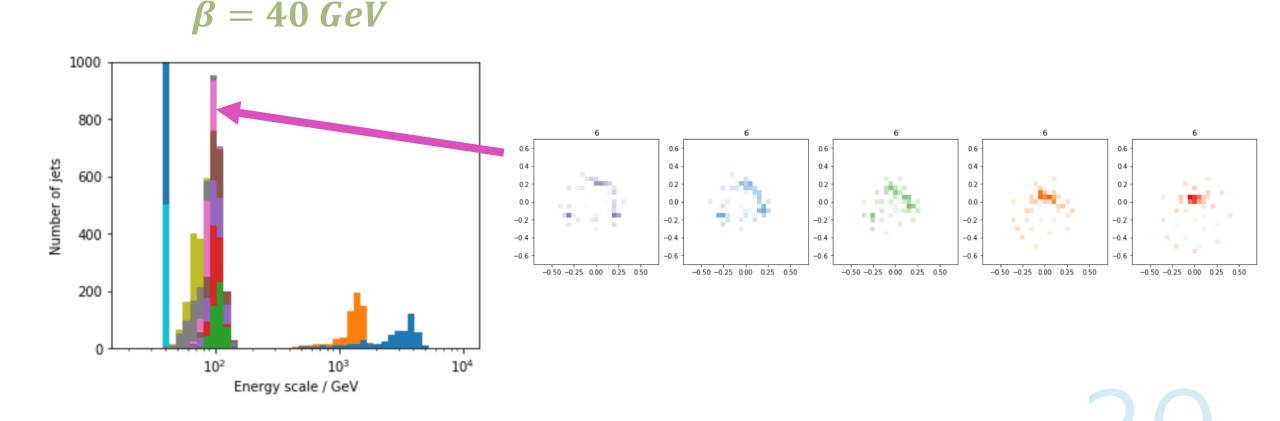


Exploring the Learnt Representation: *Top Jets*

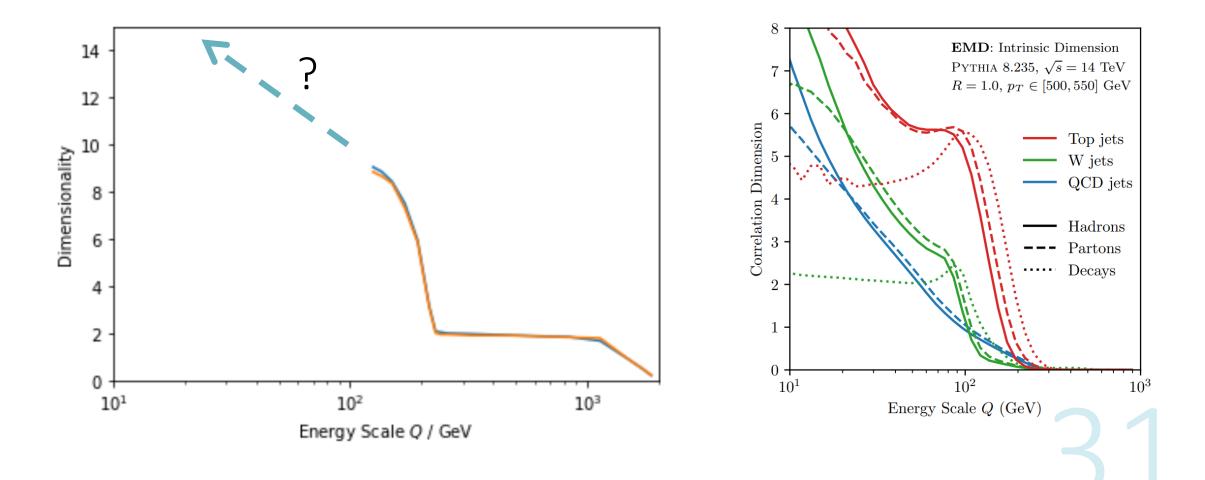




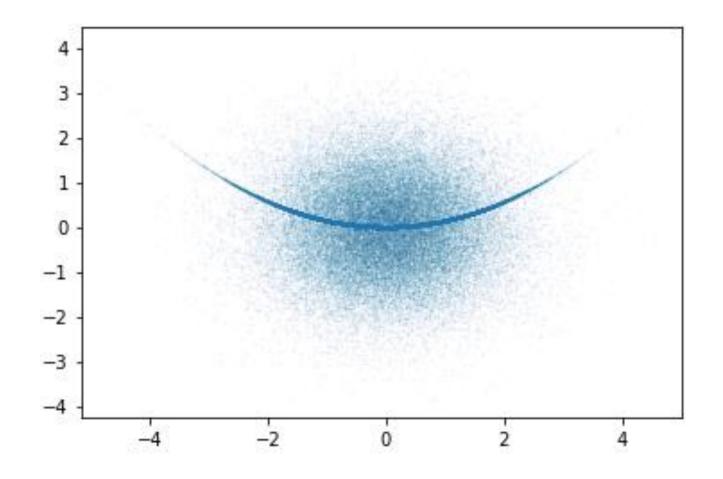
Exploring the Learnt Representation: *Top Jets*



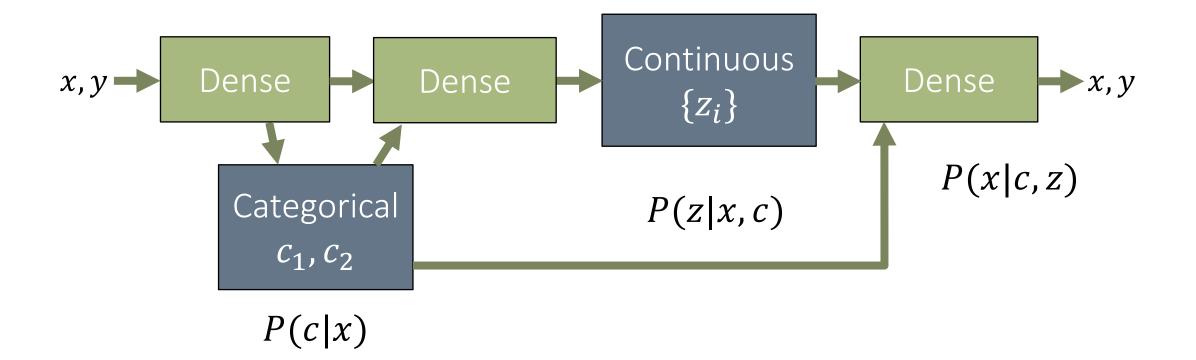
Exploring the Learnt Representation: Dimensionality



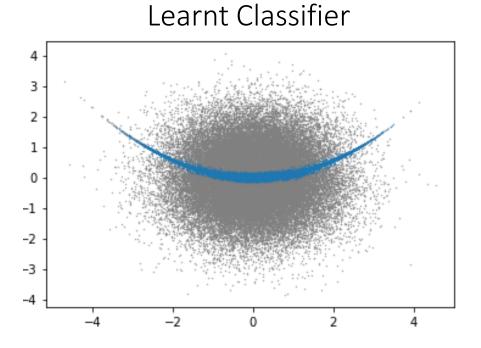
A Mixed Sample



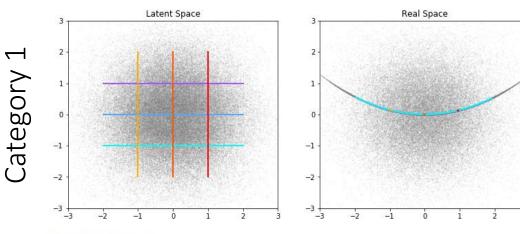
A Mixed Sample VAE structure



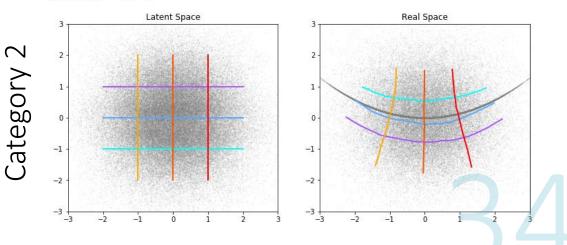
A Mixed Sample VAE structure



categories = [1, 0]



categories = [0, 0]



VAE latent spaces learn concrete representations of the manifolds on which they are trained.

A meaningful distance metric which encodes interesting physics at different scales leads to a meaningful learnt representation which encodes interesting physics at different scales.

For a sufficiently simple manifold, the VAE learnt representation is:

- Orthogonalized
- Hierarchically organized
- Has a scale-dependent fractal dimension which directly relates to that of the true data manifold

These properties are due to the demand to be *parsimonious* with information.

The Variational Autoencoder: Orthogonalization and Organization is Information-Efficient

Orthogonalization:

VS

Organization:

Exploring the Learnt Representation: *Top Jets*

