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Appetizer
The Metric Space of Collider Events



Earth Movers Distance
Cost to transform one jet into another = Energy * distance

Defines a metric space in which 
jets or collider events form a 
geometric manifold.

Taken from https://energyflow.network/docs/emd/, Eric Metediov, Patrick Komiske III, Jesse Thaler

https://energyflow.network/docs/emd/








Fish Course
The Variational Autoencoder



The Variational Autoencoder
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Reconstruction error KL(q(z|x)||p(z)) ~ “Information cost”
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The Variational Autoencoder:
Information and the loss function

Precise encoding in latent space is penalized by KL term but favoured for reconstruction
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The Variational Autoencoder:
Information and the loss function

Imprecise encoding in latent space is favoured by KL term but penalized by reconstruction
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The Variational Autoencoder:
Information and the loss function
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𝜷 → ∞
No info encoded in latent space

𝜷 → 𝟎
Info precisely encoded in latent space



The Variational Autoencoder

Loss  =  Τ𝒙𝑜𝑢𝑡 − 𝒙𝑖𝑛
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Reconstruction error KL(q(z|x)||p(z)) ~ “Information cost”

Loss  = − log(𝑝(𝑥|𝑧) + 𝐷𝐾𝐿(𝑞 𝑧 𝑥 ||𝑃(𝑧))

Loss  = − log(exp(−𝑑(𝑥, ρ(𝑧))2/2β2)) + 𝐷𝐾𝐿(𝑞 𝑧 𝑥 ||𝑃(𝑧))
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1) 𝜷 is the cost for encoding information
The encoder will only encode information about the input to the extent that its usefulness for 
reconstruction is sufficient to justify the cost.

2) 𝜷 is dimensionful
The same dimension as the distance metric, e.g. GeV.

3) 𝜷 is the distance resolution in reconstruction space
The stochasticity of the latent sampling will smear the reconstruction at scale ~ 𝛽

The Variational Autoencoder:
Information and the loss function



Cheese Course
Application to W Jets



W Jets (training data)



Jet VAE

{𝑝𝑇 𝑖 , 𝑦𝑖 , 𝜑𝑖} PFN
Large

Latent space 
(256 dim)

Dense {𝑝𝑇 𝑖 , 𝑦𝑖 , 𝜑𝑖}

Sinkhorn distance ≈ EMD 

50 particles1-50 particles



Annealing



Annealing



Annealing



Annealing

− log𝜎 (~ 𝐾𝐿)

Energy scale = መ𝛽/𝜎 [GeV] 





φ contour

z or ϑ contour
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Overall boost of jet



Orientation of third prong (QCD emission)



Exploring the Learnt Representation:
W Jets

UUncentered W Jets Centered W Jets





Spectroscopy
UUncentered W Jets at መ𝛽 = 5 GeV Centered W Jets Jets at መ𝛽 = 0.3 GeV

− log𝜎 (~ 𝐾𝐿)

Energy scale = መ𝛽/𝜎 [GeV] 

− log𝜎 (~ 𝐾𝐿)

Energy scale = መ𝛽/𝜎 [GeV] 

𝑝𝑇𝑚𝑊 𝑚𝑊



Dimensionality
UUncentered W Jets Centered W Jets

Gradient = 1
𝜎 ∝ 𝛽 (𝐾𝐿 ≈ − log𝜎)



Dimensionality

𝐷2 ≡
𝑑 ∆𝒙 2

𝑑 𝛽2
Variation of resolution with 

scale (think 𝑟2 = 𝐷 𝜎2 for 
D-dimensional Gaussian).

Variation of information 
with scale.

I am still trying to work out formally the meaning of these expressions, but they  
have an air of truthiness about them and empirically give sensible results.

𝐷1 ≡ −
𝑑 𝐾𝐿

𝑑 log 𝛽
≅ 

𝑖

𝑑 log 𝜎𝑖
𝑑 log 𝛽

𝐷𝑐𝑜𝑟𝑟 ≡
𝑑 log𝑁

𝑑 log 𝑟

See also
1810.00597 Danilo Jimenez Rezende, Fabio Viola



Dimensionality

[1902.02346] Komiske, Metodiev, Thaler



Dimensionality

Von Mises Distribution



Dessert
Unsupervised Classification



Mixed Samples
Top and light g/q

Decoder learns:
1. If 𝑧0 > 0, then it is a light jet and ignore the substructure information in 𝑧1, 𝑧2, etc.
2. If 𝑧0 < 0, then it is a top jet, and get three-prong substructure from 𝑧1, 𝑧2, etc.

q/g
top q/g

top

q/g
top



Mixed Samples
Top and light g/q

[1808.08979] T. Heimel, G. Kasieczka, T. Plehn, 
J. M. Thompson



Mixed Samples
Top and light g/q



Mixed samples: Another idea

𝑥, 𝑦 Dense
Continuous

{𝑧𝑖}
Dense 𝑥, 𝑦

Categorical
𝑐1, 𝑐2

Dense

𝑃(𝑐|𝑥)

𝑃(𝑧|𝑥, 𝑐)
𝑃(𝑥|𝑐, 𝑧)

𝐿𝑜𝑠𝑠 =
∆𝒙 2

2 𝛽2
+ 𝐾𝐿Gauss + 𝛼𝐾𝐿Cat

[1611.01144 Eric Jang, Shixiang Gu, Ben Poole]
[1611.00712 Chris J. Maddison, Andriy Mnih, Yee Whye Teh]



Mixed samples: Another idea



Mixed samples: Another idea

Learnt Classifier
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Mixed samples: Another idea



Digestif
Conclusions

VAE latent spaces learn concrete representations of the manifolds on which they are 
trained.

A meaningful distance metric which encodes interesting physics at different scales 
leads to a meaningful learnt representation which encodes interesting physics at 
different scales.

For a sufficiently simple manifold, the VAE learnt representation is:
• Orthogonalized
• Hierarchically organized
• Has a scale-dependent fractal dimension which directly relates to that of the 

true data manifold

These properties are due to the demand to be parsimonious with information.



Special thanks to



The Variational Autoencoder
Bananas

Dense
10-dim
Latent
Space

Dense



The Variational Autoencoder
Bananas
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~ -ln(σ)
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The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝜷 < 𝟎. 𝟏
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The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝜷 < 𝟎. 𝟏

β
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K
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Size = Τ𝛽 𝜎The VAE is doing non-linear PCA



The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝟎. 𝟏 < 𝜷 < 𝟏. 𝟎
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The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝜷 ≫ 𝟏
β

0.01                0.1                  1

K
L 

 ~
 -

ln
(σ

)



The Variational Autoencoder
Dimensionality

𝐷1 ≡
𝑑 ∆𝒙 2

𝑑 𝛽2

Variation of resolution with 

scale (think 𝑟2 = 𝐷 𝜎2 for 
D-dimensional Gaussian).

Variation of information 
with scale.

I am still trying to work out formally the meaning of these expressions, but they  
have an air of truthiness about them and empirically give sensible results.

𝐷2 ≡ −
𝑑 𝐾𝐿

𝑑 log 𝛽
≅

𝑑 log 𝜎

𝑑 log 𝛽

𝐷𝑐𝑜𝑟𝑟 ≡
𝑑 𝑁

𝑑 log 𝑟



The Variational Autoencoder
Orthogonalization and Organization is Information-Efficient

vsOrthogonalization:

vsOrganization:



Reconstruction Error
Sinkhorn Distance ≈ EMD

arXiv:1902.02346

Sinkhorn’s algorithm; start with ∆𝑅𝑖𝑗 , 𝑝𝑇𝑖 , 𝑝𝑇𝑗 then:

𝐾𝑖𝑗 = exp( Τ∆𝑅𝑖𝑗 𝜏)

𝑢𝑖 = 𝟏𝑖
𝑣𝑖 = 𝟏𝑗

Repeat N times:
𝑢𝑖 = Τ𝑝𝑇𝑖 𝐾. 𝑣 𝑖

𝑣𝑖 = Τ𝑝𝑇𝑗 𝐾𝑇 . 𝑢
𝑗

Return 𝑇𝑖𝑗 = 𝑢𝑖𝐾𝑖𝑗𝑣𝑗



The Variational Autoencoder:
Dimensionality

∆𝒙 2 = σ ∆𝑥𝑖
2 = 𝐷𝜌2 + σ𝑖>𝐷 𝑆𝑖

2

𝐷 =
𝑑 ∆𝒙 2

𝑑𝜌2

Setting 
𝑑𝐿

𝑑𝜎
= 0 implies:

1. 𝜌 = 𝛽

2. 𝐷 =
𝑑 𝐾𝐿

𝑑 log 𝛽



The Variational Autoencoder
Doesn’t suffer from curse of dimensionality

Toy data generated from:

𝑃 Ԧ𝑥 = [ς𝑖=1
10 𝑁𝑖 𝜇 = 0, 𝜎 = 1 ] 𝑁11 𝜇 = 0, 𝜎 = 0.1

With 𝑁𝑡𝑜𝑡 = 5 ∗ 105 points

Typical distance to neighbour ~ 𝑁𝑡𝑜𝑡
−1/10

~ 0.3

Correlation dimension runs into sparsity limit before the 
small dimension is even discovered!

The VAE finds the small dimension.



The Plain Autoencoder
Garbage

My old plan:

• Train AE on jet images using different latent space sizes N
• Study reconstruction quality as a function of N
• … Learn something about ‘jet information’?

Flaws:
1) Jet images are garbage
2) Autoencoders are garbage



“Jet Images are Garbage”

All three of these jet images are maximally different from 
eachother according to summed pixel intensity difference, but (a) 
and (b) are more physically similar than are (b) and (c).

(a) (b) (c)



Future Directions

1. What is the point?

2. Alternative latent priors?

3. Alternative metrics?



The Variational Autoencoder
ML Engineer:

“A VAE is a fancy AE with regulated stochastic latent space 
sampling”

Bayesian statistician:

“A VAE is a probability model trained to extremize the 
Evidence Lower BOund on the posterior distribution p(x)”



The Variational Autoencoder:
Bananas

Latent Space Reconstruction Space

𝜷 < 𝟎. 𝟏

Size = Τ𝛽 𝜎The VAE is doing non-linear PCA


